Cell Factory Engineering Using Combinatorial and In Vitro Evolution Strategies

NIH-Grant: "Biosynthesis of Unnatural Porphyrins"

Claudia Schmidt-Dannert
Department of Biochemistry, Molecular Biology & Biophysics
University of Minnesota
1479 Gortner Avenue
St. Paul, MN 55108, USA

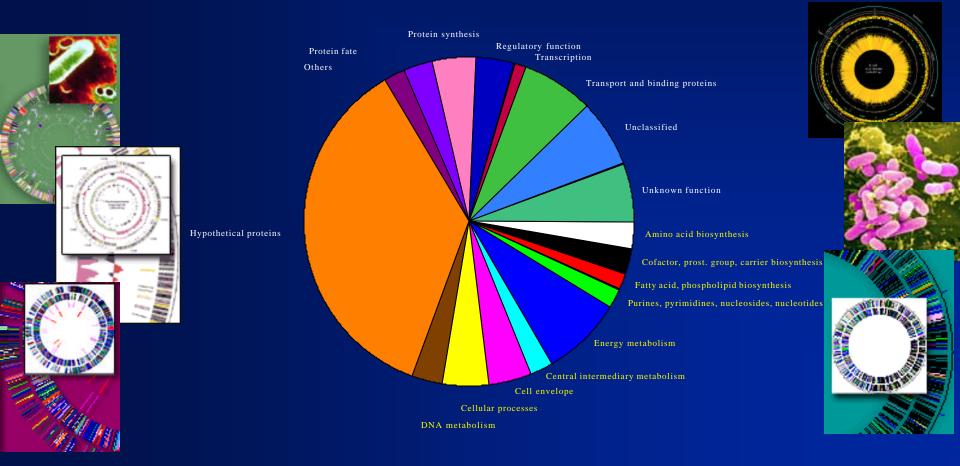
Prepared for Presentation at Interagency Conference on Metabolic Engineering, Washington D.C., 01-31-03 Copyright © Claudia Schmidt-Dannert, University of Minnesota

Presented material:

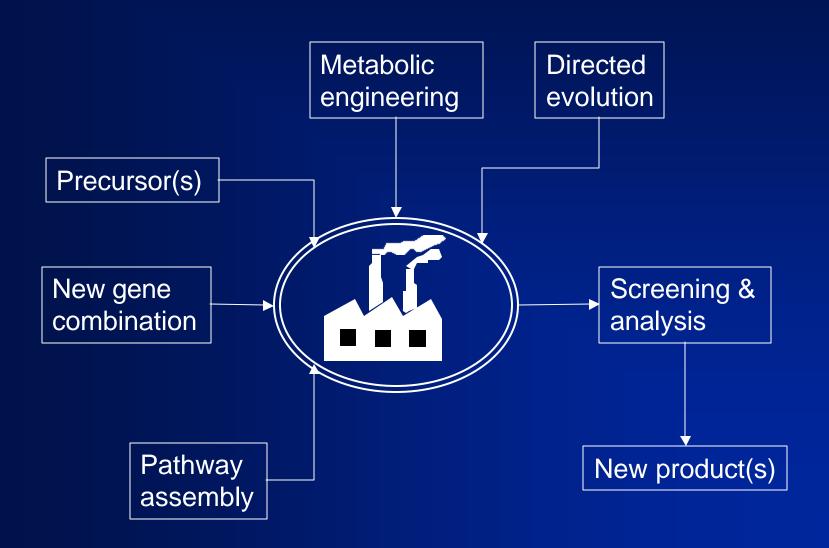
Published:

- C. Schmidt-Dannert, D. Umeno, F.H. Arnold (2000) Molecular breeding of carotenoid biosynthetic pathways. Nat. Biotechnol. 18:750-753.
- C. Schmidt-Dannert (2001) Directed evolution of single proteins, metabolic pathways and viruses. Biochemistry 40:13125-13136. P.C. Lee, C. Schmidt-Dannert (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl. Microbiol. Biotechnol. 60:1-11.

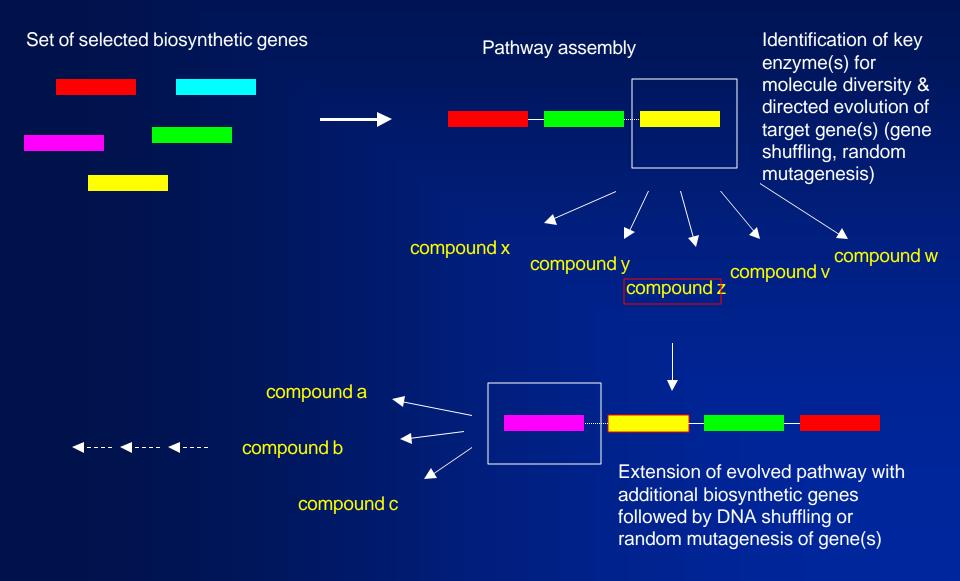
Unpublished:


- P.C. Lee, A.Z.R. Momen, C. Schmidt-Dannert. Structurally novel carotenoids by combinatorial extension of *in vitro* evolved pathways. Submitted.
- S.J. Kwon, A. de Boer, C. Schmidt-Dannert. Overproduction of diverse porphyrins in *E. coli* by biosynthetic pathway engineering. Submitted.

Cell Factory Engineering Using Combinatorial and *In Vitro* Evolution Strategies


Genomics – Toolbox of metabolic genes

~ 400 microbial genomes completed or in progress are listed @ GOLD & TIGR DB


Out of 248,825 genes @ TIGR DB, ~ 30% of the known genes encode metabolic enzymes

Strategies for cell factory engineering

In vitro evolution of pathways

Biosynthesis of nove carotenoid structures in *E. coli* using combinatorial and *in vitro* evolution strategies.

Acknowledgments

Frances Arnold

Daisuke Umeno

Pyung C. Lee

Erin Marasco

Ben Mijts

Ruhul Momen

Anuj Bhartiya

Funding

DARPA, NSF, Packard Foundation, DFG, McKnight Foundation, DuPont

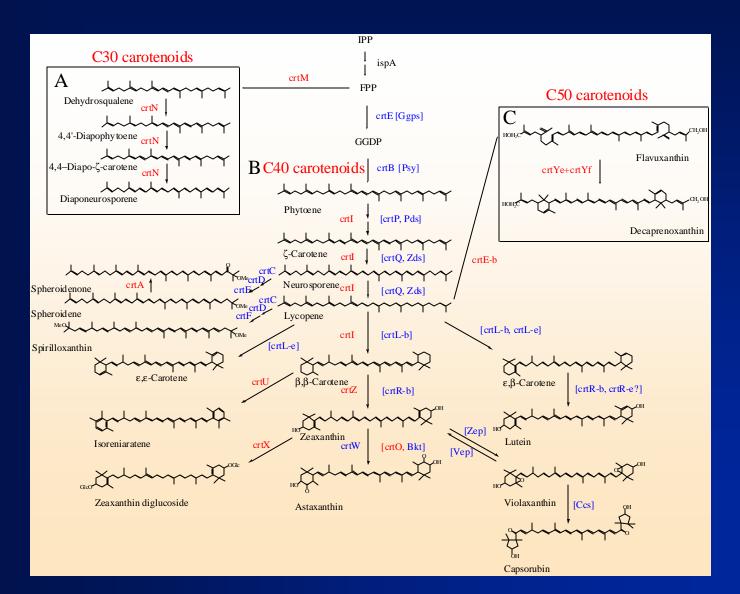
Carotenoids

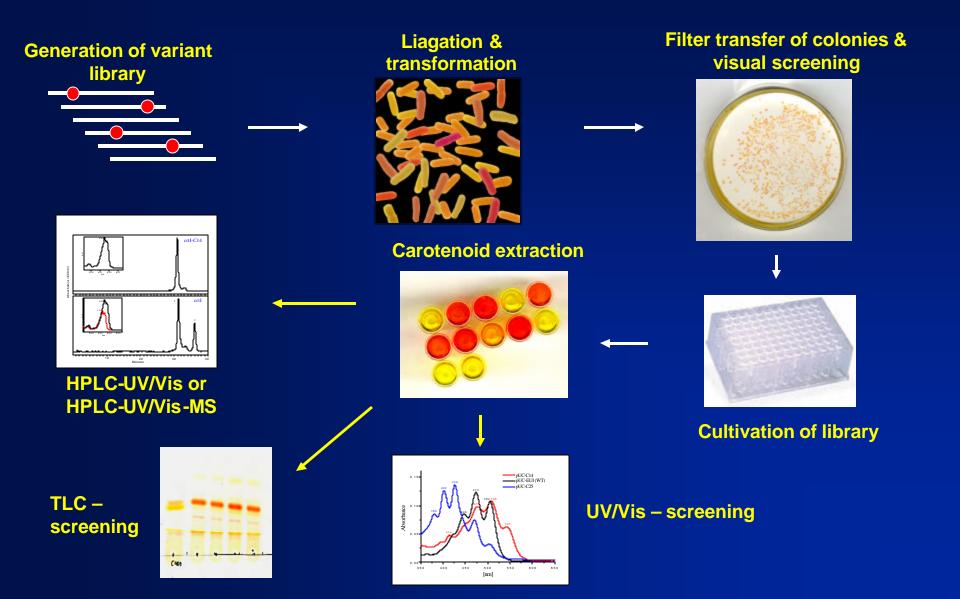
Functions

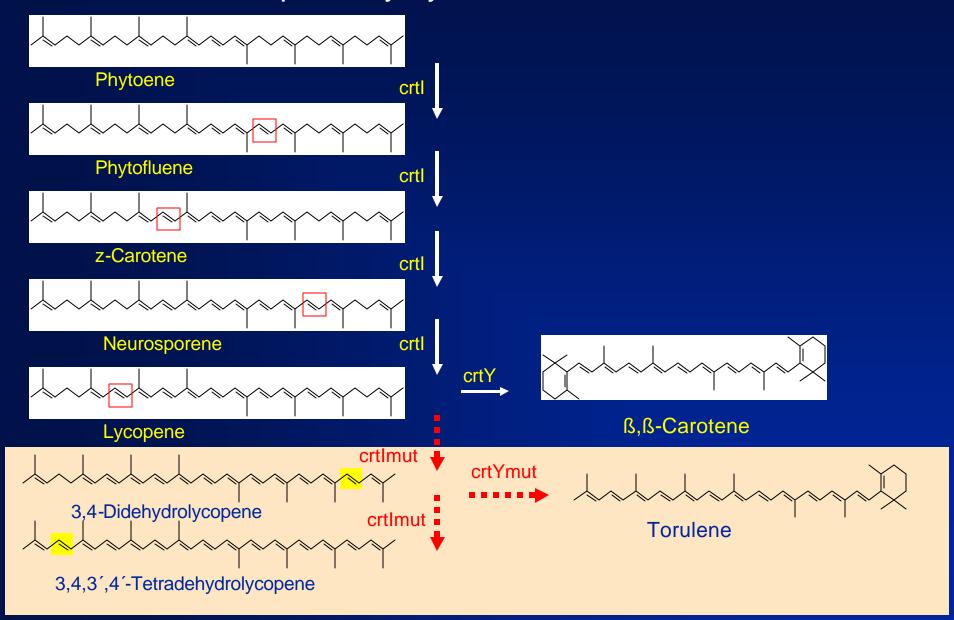
- coloration
- photosynthesis and photoprotection
- in nutrition and health: vitamin A and retinoids antioxidants, tumor suppressing, prevention of chronic diseases specific tumor suppressing activities

<u>Industrial importance</u>

- food colorants
- animal feed supplements, e.g. aquaculture of salmon, poultry industry
- antioxidants
- vitamin A precursors



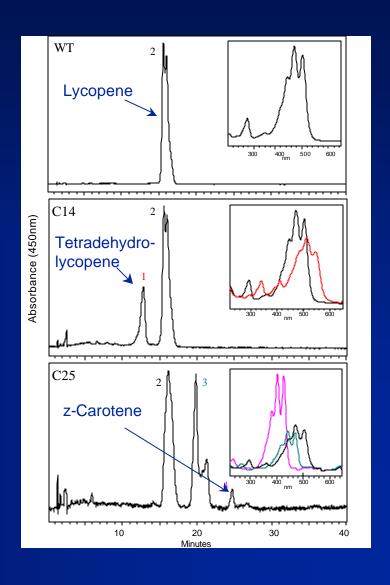

Carotenoid biosynthesis


Carotenoid gene toolbox

Gene Isoprepoid r	Enzyme orecursor biosynthesis	Catalyzed reaction	Strain
crtE	GGDP synthase	head-to-tail condensation of IDP + FDP	Erwinia uredevora
ispA	FDP synthase	head-to-tail condensation of 2 IDP + DMADP	E. coli
fgs	FGDP synthase	head-to-tail condensation of 3 IDP + DMADP	Aeropyrum pernix
Generation crtB	of C40 carotenoid backbone Phytoene synthase	head-to-head condensation of 2 GGDP	Erwinia uredevora
crtI	Phytoene desaturase	introduction of 4 desaturations in phytoene	Erwinia uredevora Erwinia herbicola
Generation crtM	of C30 carotenoid backbone Dehydrosqualene synthase	head-to-head condensation of 2 FDP	Staphylococcus aureus
crtN	Dehydrosqualene desaturase	introduction of 3 desaturations in dehydrosqualene	Staphylococcus aureus
Modification crtY	of C40 carotenoid end-grou Lycopene cyclase	p cyclization of Ψ end groups in lycopene to β end groups	Erwinia uredevora Erwinia herbicola
crtE-b	Lycopene elongase	transfer of 2 C5 isoprenoid units to lycopene	C. glutamicum
crtYe/Yf	Heterodimeric carotene cyclase	cyclization of C45 and C50 carotenoids	C. glutamicum
crtA	Neurosporene monooxygenase	oxygenation at C2 of neurosporene	Rhodobacter sphaeroides Rhodobacter caspsulatus
crtO	Carotene oxygenase	oxygenation at C4 of β-carotene	Synechocystis sp.
crtU	Carotene desaturase	desaturation/methyltransferation of β rings in β -carotene (aromatic ring formation)	Streptomyces griseus Brevibacterium linens
crtZ	β-carotene hydroxylase	hydroxylation at C3 of β-carotene	Erwinia uredevora Erwinia herbicola
crtX	zeaxanthin glucosylase	glycosylation at C3 of zeaxanthin	Erwinia uredevora Erwinia herbicola

Pathway evolution strategy

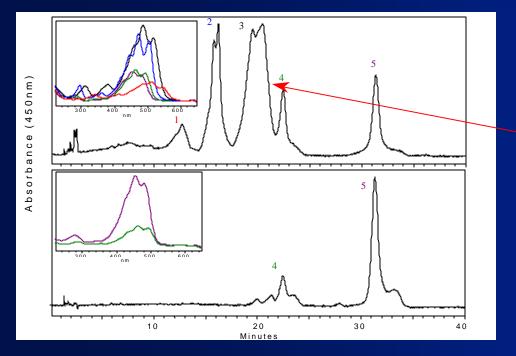

Introduction of novel branch points upstream in assembled pathway by *in vitro* evolution



Extension of central carotenoid desaturation pathway by *in vitro* evolution of desaturase crtl

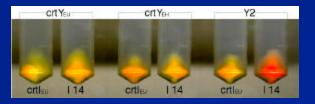
Library (~10⁴ clones) of shuffled *crtl* genes yielded:

1-2 yellow mutants per 500 clones (C25 selected)1 pink mutant (C14)



Extension of evolved desaturase pathway with a library shuffled lycopene cyclases crtY

Y14



Y2

C14 + Y2

- 1 Tetradehydrolycopene
- 2 Lycopene
- 3 Torulene
- 4 ß,y -Carotene
- 5 ß,ß-Carotene

crtl + Y2

- 4 ß,y -Carotene
- 5 ß,ß-Carotene

Biosynthesis of unnatural porphyrins in *E. coli*

Acknowledgements

Arjo de Boer

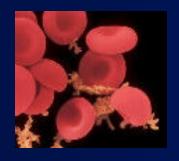
Seok Joon Kwon

Funding

NIH #GN65471

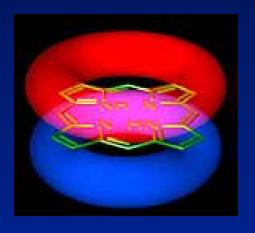
Specific Aims

Aim 1: Establish porphyrin overproduction in *E. coli* by cloning of metabolic genes from different bacteria and assembly into functional biosynthetic pathways.


Aim 2: Establish and develop strategies for quantitative and qualitative porphyrin analysis and high-throughput screening of *E. coli* libraries.

Aim 3: Create new metabolic pathways for the production of structurally diverse unnatural porphyrins by molecular breeding.

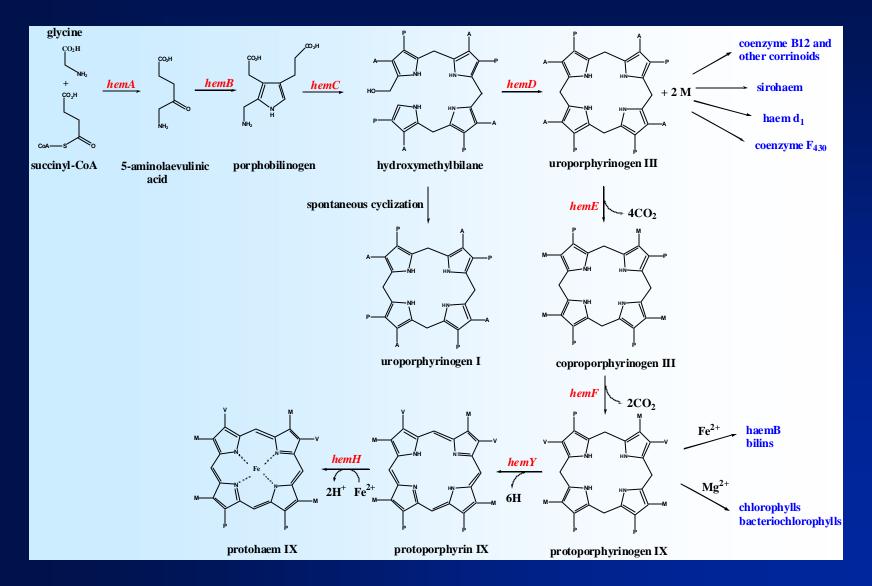
Project I: Expanded porphyrins


Project II: Unnatural modified tetrapyrrolic poprhyrins

Porphyrins

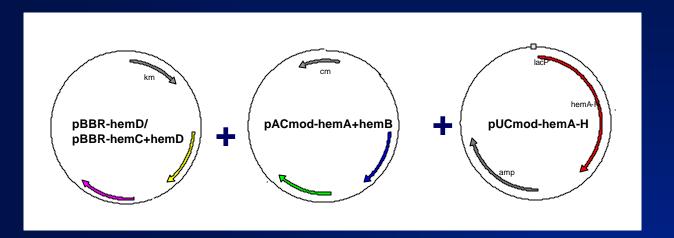
Functions

- electron transport systems
- prosthetic groups
- "pigments of life" or "colors of life"

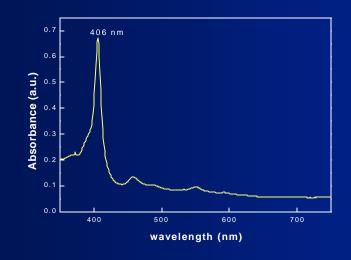


Applications

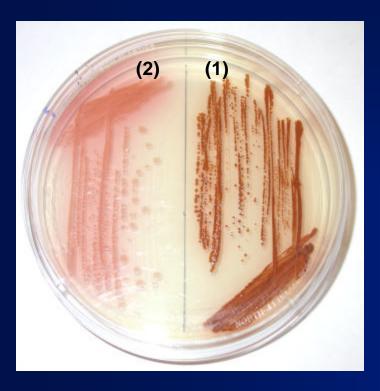
- photodynamic treatment of cancer (laser dyes)
- various biomedical applications: treatment of viruses, gene regulation therapies, drug targeting
- material sciences e.g. porphyrin arrays
- chemistry e.g. electro catalysis, electrodes in fuel cells


Porphyrin biosynthesis

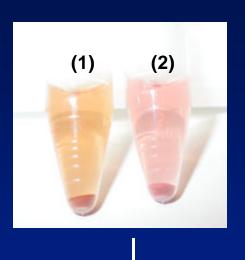
Porphyrin gene toolbox


Gene	Enzyme	Catalyzed reaction	Strain
hemA	ALA-synthase	condensation of succinyl CoA + glycine	R. capsulatus
hemB	ALA-dehydratase	dimerization of 2 ALA to form porphobilinogen	E. coli
hemC	porphobilinogen deaminase	deamination and polymerization of 4 porphobilinogens to form the unstable hydroxymethylbilane	E. coli Synechocystis sp. R. capsulatus S. typhimurium K. pneumoniae
hemD	uroporphyrinogen III synthase	ring D inversion + cyclization of hydroxymethylbilane to uroporphyr-inogen III (uro'gen III)	E. coli
hemE	uroporphyrinogen decarboxylase	decarboxylation of 4 acetate side-chains of uro'gen III to form coproporphyrinogen III (copro'gen III)	E. coli Synechocystis sp. R. capsulatus
hemF	coproporphyrinogen III oxidase	oxidative decarboxylation of two propionate side chains in rings $\mathbf{A}+\mathbf{B}$ of copro'gen III to vinyl groups to form protoporphyrinogen IX (proto'gen IX)	E. coli Synechocystis sp.
hemY	protoporphyrinogen IX oxidase	six-electron oxidation of proto'gen IX to form protoporphyrin IX	B. subtilis B. halodurans
hemH	ferrochelatase	Fe ²⁺ -metallation of protoporphyrin IX to produce protohaem IX	E. coli R. capsulatus B. subtilis

Porphyrin pathway assembly



Uroporphyrin I overproduction in E. coli


Reconstruction of porphyrin pathways in E. coli

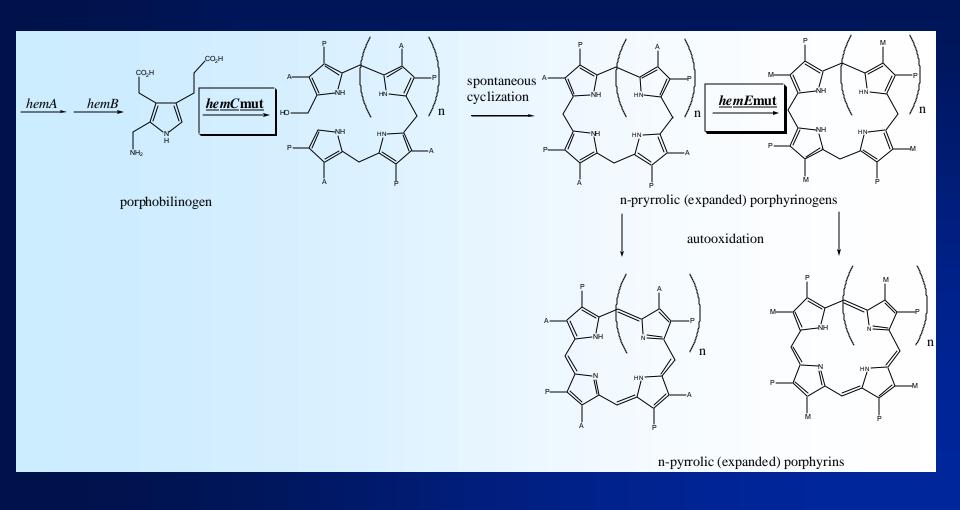
Porphyrin production in recombinant E. coli

centrifugation

Extraction (aceton:HCl 10:1)

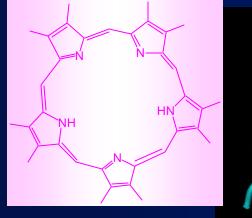
(1) hemA+B+C+D+E+F+Y (2) hemA+B+C+D+E+Y

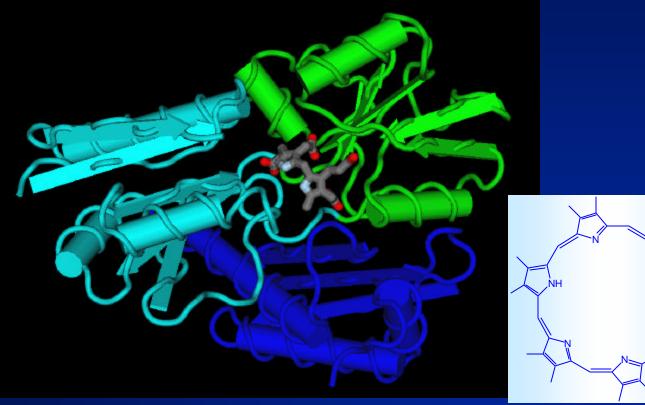
Extracts from cell pellets (P) and culture supernatants (S).


Microbial production levels of vitamin B₁₂

Species of micro-organism or microbiological process	Main component of culture medium	Conditions of fermentation	Vitamin B ₁₂ production (mg/l)
Propionibacterium freudenreichii	Glucose	Anaerobiosis, 5,6-dimethyl benzimidazole	206.0
Rhodopseudomonas protamicus	Glucose	5,6-dimethyl benzimidazole	135.0
Propionibacterium shermanii	Glucose	5,6-dimethyl benzimidazole	60.0
Pseudomonas denitrificans *	Sucrose	Aerobiosis, betaine	60.0 *
Nocardia rugosa	Glucose	Aerobiosis	18.0
Rhizobium cobalaminogenum	Sucrose	Aerobiosis	16.5
Micromonospora sp.	Glucose	5,6-dimethyl benzimidazole	11.5
Streptomyces olivaceus	Glucose	5,6-dimethyl benzimidazole	6.0
Nocardia gardneri	Hexadecane	Aerobiosis	4.5
Butyribacterium methylotrophicum	Methanol	Anaerobiosis	3.6
Pseudomonas sp.	Methanol	5,6-dimethyl benzimidazole	3.2
Arthrobacter hyalinus	Isopropanol	5,6-dimethyl benzimidazole	1.1

From: Martens et al. (2002) Appl. Microb. Biotechnol. 58:275-285.


^{*} Rhône Poulence Rorer uses a genetically engineered strain supposedly producing 100-300 mg/l


Biosynthesis of expanded porphyrins

Biosynthesis of expanded porphyrins

Increasing the porphobilinogen polymer chain length by enlarging the active site cleft though *in vitro* evolution.

ivext steps	
Project 1:	Expanded porphyrins
☐ investigate the ☐ if unnatural oliginate we will further of	oducts formed by hemC e role of the dipyrromethane co-factor gopyrrole products are synthesized, optimize oligopyrrole assembly scaffolds by using on and/or rational approaches
Project 2:	Unnatural tetrapyrroles
	cation of tetrapyrrole synthesis in <i>E. coli</i> through directed mF to obtain variants with novel substrate and product
E. coli e.g. ove	I identify rate limiting step of metal-porphyrin synthesis in rexpression of metal-uptake transporter chelatase activity of hemH - directed evolution of hemH to

Further develop and refine high-throughput screening methods using HT-TLC.

obtain variants with novel chelatase activities